TEMPERATURE STRESSES IN AN ANNULAR
PLATE MADE OF REINFORCED
LAMELLAR MATERIAL
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Solutions are obtained for a nonsteady-state problem of heat conduction and of the corres-
ponding quasistatic thermoelasticity problem for an annulus made of a reinforced lamellar

material.

We consider a plate in the form of an annulus. We assume that it possesses thermal and elastic cy-
lindrical anisotropy and that it has a plane of symmetry (the z axis is normal to this plane),

We assume that heat transfer with the exterior medium through the surface of the annulus obeys New-
ton's law. The temperature of the medium washing the surfaces z = +4 is an arbitrary function of time t,(7),
while the temperatures ofthe medium washing the concentric surfaces p =r, p =R are tp(7), ty(7).

For the determination of the nonsteady-state temperature field in such a plate we have the heat con-
duction equation and the boundary conditions [1]
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Making use of the Laplace transform with respect to the variable 7, we seek the solution of the bound-
ary value problem (1)-(3) in the form

1~S E{t (’I:)Bl, [ g (i 0, mvn>_BiRzg°’(V" 0, mvn)]-:—tR(r)BiR [ z (_ 0, v )
r 7 r

-+ Bi, Z" (_n 0, v )] 4 BET [Bl z <__n_ o, my ) + Big 28" (in_ 0 V)
r v r r

n /

Fo

P Tas S, (Fo—T) .

s BiBir T (Zéo’ (—V—’L o, ) -7z (~—~ 0, mvn)”} L Bizj‘ 1. (x) e Pz F0 g, (4)

Va r r D(v,)

0
where
r? Big vim . Bi, v?
‘I)(Vn) = —2\7—— [__Z(()l) (mvm vn) ( :2 ) _I_ Z((]l) (‘Vn, ﬂ'l’\’n) (ﬁl BerlR - r— + —f;i—
n

Yz (mv,, v,) (Bi, — mBig) — —= Z” (mv,, v,) (mBi,—Bir) + -2 Z{ (mv,, vn)];
r

Physicomechanical Institute, Academy of Sciences of the Ukrainian SSR, L'vov. Translated from
Inzhenerno-Fizicheskii Zhurnal, Vol. 19, No. 4, pp. 742-747, October, 1970. Original article submitted

September 30, 1969.

© 1973 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York,
N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without
permission of the publisher. A copy of this article is available from the publisher for $15.00.

1324



ZP (% =J, WY () =Y, (0 ;) @ j=0; 1)

R 2
m=-—; sn:—(Biz—l— v )

n
r r?

Tor the case of an isotropic plate, when on the cylindrical surfaces we have conditions of the first
kind (ap =, oR =), this solution is given in [2]. But if the interior surface of the ring is insulated and
on the exterior surface we have a condition of the first kind, then it is easy to obtain from (4) the known (3]
solution of the problem by making ap — 0, ar ~ <« and taking te(r) = 0.

Taking in (4) the limit as @, — 0, ag — 0, we obtain the following expression for the temperature
field:
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For the case when the temperature of the exterior medium varies at the initial moment by some quan-
tity t,, considered constant in what follows, this temperature field becomes

t=t, (1 — e =5, (6)

Let us determine the temperature stresses induced in the ring by the temperature field (4) obtained,
by making use of the necessary [4] relations of the thermoelasticity for a plate: ’
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from the conditions that the plate is free of external load: 0p = Ofor p=r, p=R.

Determining the integration constants after the computation of the necessary integrals [5], we obtain
the following expressions for the components of the temperature stresses:
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If in the formulas (10) the temperature field is stationary and Eq): Ep =E, ot =of = QG Voo = Vo
=y, then we arrive at the known [6-8] expressions of the temperature stresses for an isotropic plate under
steady-state heat conditions,

The largest temperature stresses induced by the temperature field (6) have the form
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We note that the nonsteady-state temperature field, constant along the entire domain of its plate does
not induce temperature stresses in the isotropic plate. In an anisotropic plate, temperature stresses arise
and, as seen from (12), they depend on the heat transfer with its lateral surfaces, the nonsteady-state tem-
perature field and the polar radius.

Let us assume that the annular plate is made of epoxy resin, reinforced with equal-strength glass
bands. The necessary physicomechanical characteristics for such a plate are given in [4, 9]. In order to
elucidate the effect of the heat transfer with the lateral surfaces z = =§ of the plate and the nonsteadiness
of the temperature field on the temperature stresses in the reinforced plates, the stresses (12) have been
computed for a reinforcing coefficient y' = 0.8.

In Fig. 1 diagrams of the variations of these stresses as a function of the Fourier numbers are given
for several values of the Biot numbers. It is clear from the diagrams that the largest radial and annular
temperature stresses are always contractive and are attained for a stationary heat condition, With the
decrease of the heat transfer the temperature stresses will decrease.
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Fig. 1. The variation in time of the maximal radial (a) and
annular (b) temperature stresses in an annular plate for dif-
ferent values of the Biot number, In (b), along the ordinates

we have a;-kﬂ.

NOTATION
t(p, T) is the temperature of the plate;
T is the time;
p, I, R are the polar radius, inner and outer radii of the ring related to the

semithickness § of the plate;
Biy, = OZZ(S/XD, Bir = O‘ré/)\p,

Big = O‘R‘S/Ap are the Biot numbers on the surfaces;

z=%06,p=r, p=R; az, oy, ap are the heat transfer coefficients with these surfaces;
Fo =2,7/Cé is the Fourier number;

2p is the heat conductivity coefficient in the direction p;
C is the heat capacity;

Ey = Eg(l—zzwv@)‘l;tkz :tE_(p
/Ep; of = _ozp,+ VopQops 0k

= oz';)quo + k2 'ozt(p; Ep, E © are the Young's moduli in the radial and tangential directions;
Yops Voo are the Poisson ratios for these directions;
ozg, oztgp are the linear expansion coefficients in the directions p, o;
u is the radial displacement;
Iyix), Ko(x) are the zero-order Bessel functions of the first and the second kind with
imaginary argument;
In(x), Yp(x) are the Bessel functions of the first and second kind with real argument;
Sp’q (%) is the Lommel function with real argument,
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